
A Parallel Incremental Mining Algorithm using
Modified Inverted Matrix

Siddharth Shah* Aniruddha K* Prerak Thakkar* Chinmay Joshi* Gopi Bhatt*
*Department of Computer Engineering,

A.D Patel Institute of Technology

Abstract- The association rule mining has been very useful in many
business applications, such as market analysis, web data analysis,
decision making, knowing customer purchase behavior etc. In almost
all transactional databases, new transactions are added with time. So
an efficient algorithm is required to be developed in order to avoid re-
scanning of old datasets. Incremental mining [18] deals with
generating association rules based on available knowledge (obtained
from mining of previously stored databases) and incremented
databases, without scanning the previously mined databases again. In
this paper a novel approach of using horizontal and vertical database
layout, a new representation of transactional database, has been
proposed (modified version of Inverted Matrix [17]) to mine large
database incrementally. One of the major advantage of this approach
is that it generates the data structure in a single scan of the database
and whenever new database is added incrementally, the generated
structure is updated to consider the effect of incremented database. In
this paper the Modified Inverted Matrix is distributed amongst
parallel nodes. Frequent item from the modified inverted matrix is
assigned to parallel nodes in alternate splitting fashion. In parallel
implementation, a Co-Occurrence Frequent Item (COFI) tree [17] for
assigning frequent item is generated by the parallel nodes. Mining
process is accomplished by all nodes which generate all frequent items
in which the assigned items are participated. Here, less
communication is required amongst the master node and all parallel
node to generate all frequent item sets. Moreover, one of the
additional advantage is that the algorithm still responds correctly
without the need for changing the data structure, whenever desired
support value changes. In this paper we provide the theoretical proof
of concept for our proposed approach.

Keywords-Parallel mining, Incremental mining, Inverted matrix, COFI
tree.

1. INTRODUCTION

Due to the increasing use of large amount of data in various
applications, the importance of data mining has grown
rapidly. With respect to business applications, analysis of
previous transactional data can provide valuable
information on purchase behavior of customer, and thus
help in making business decisions. Thus it is necessary to
collect and analyze a sufficient data properly before making
any decisions. Since the amount of data being processed is
large, it is important for the mining algorithms to be very
computationally efficient. Various data mining algorithms
have been explored in the literature [1–6]. Recently many
important applications have created the need of incremental
mining. This is due to the increasing use of the such
databases where data is being continuously added e.g.,
super market data, stock market data, sales data, and
weather/traffic records, etc. In the incremental mining, data
are continuously being added with time. The aim of
incremental mining techniques is to re-run the mining
algorithm on the only updated database. However, it is
obviously less efficient since previous mining rules are not
utilized for discovering new rules while the updated portion
is usually small compared to the whole dataset.
Consequently, the efficiency and the effectiveness of

algorithms for incremental mining are both crucial issues.
Algorithms should be such that only updated transactions
and previous mined rules to be taken into account for
generating new rules. The process of incremental mining is
described in Fig. 1. The next few sections discuss the
related work and the proposed approach for Incremental
Mining.

Fig 1: Process of incremental mining [4]

2. RELATED WORK

2.1 Inverted Matrix
The concept of Inverted Matrix and COFI Tree [17] was
used for Interactive mining, where if the support change,
re-scan of complete dataset is not required. In Inverted
Matrix [17] the transactional data is converted into a new
database layout called Inverted Matrix that prevents
multiple scanning of the database during the mining phase,
in which finding frequent patterns could be achieved in less
than a full scan of Inverted Matrix. The Inverted Matrix is
then mined using different support levels to generate
association rules using the Inverted Matrix algorithm.
Inverted Matrix layout is a combination of both horizontal
and vertical layouts. Each item associates with all
transactions in which it occurs, and each transaction with
all its items using pointers. The item is the key of each
record in this layout. Each attribute on the Inverted Matrix
is a pointer that points to the location of the next item on
the same transaction. The pointer is a pair where the first
element indicates the address of a line in the matrix and the
second element indicates the address of a column. Each line
in the matrix has an address and is prefixed by the item it
represents with its frequency in the database. The lines are
ordered in ascending order of the frequency of the item.
Building the Inverted Matrix is done in two phases, in
which phase one scans the database once to find the
frequency of each item and orders them into ascending
order. The second phase scans the database again once to
sort each transaction into ascending order according to the
frequency of each item.

Original

Databas

Original

Patterns/Rules

Incrementa

l Database

Incremental

Mining

Updated

Patterns/Rules

Association

Rule Mining

Siddharth Shah et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (2) , 2017, 232-236

www.ijcsit.com 232

2.2 Co-occurrence Frequent-Item (COFI) Trees
Computing the frequencies is done by reading sub-
transactions for frequent items directly from the Inverted
Matrix, then building independent trees called COFI Trees
[17] for each frequent item in the transactional database.
Each one of the trees are mined separately as soon as they
are built, without building conditional sub-trees recursively
and are then discarded. The COFI-tree for a given frequent
item x contains only items that are more frequent than x or
as frequent as x. For each given frequent 1-itemset all
frequent k-item sets are found. For this, a COFI-tree is built
for each frequent item except the most frequent one,
starting from the least frequent.
The mining process [17] is done for each tree
independently. From each branch of the tree, using the
support count and the participation count, candidate
frequent patterns are found and non-frequent patterns are
discarded at the end when all branches are processed.

Tid Items
T1 A G D C B
T2 B C H E D
T3 B D E A M
T4 C E F A N
T5 A B N O P
T6 A C Q R G
T7 A C H I G
T8 L E F K B
T9 A F M N O
T10 C F P J R
T11 A D B H I
T12 D E B K L
T13 M D C G O
T14 C F P Q J
T15 B D E F I
T16 J E B A D
T17 A K E F C
T18 C D L B A

Figure 2: Transaction Database [17]

3. PARALLEL IMPLEMENTATION OF FREQUENT PATTERN

MINING WITH PROPOSED MODIFIED INVERTED MATRIX

Inverted matrix generation requires two full I/O scans of
the dataset and generates a special disk based data
structure. One scan is required to find frequencies of all
items and then other scan for storing the items in
transactional array. In our work, it was found that instead of
two scan, a modified inverted matrix in which entries are
not sorted according to support count can be build with
single scan. This approach reduces one I/O read of
database. Below Figure 3(a) and 3(b) are an image of
Modified Inverted Matrix with single scan of transactional
database given in Figure 2. Then using the information of
inverted matrix, COFI Tree can be build which can then be
mined to generate frequent patterns. Since Modified
Inverted Matrix (MIM) is not sorted, whenever any new
transactions are added, the information of the same can be
easily incorporated into Modified Inverted Matrix without
scanning the original database again which makes mining
incrementally. Then COFI Tree can be generated from
MIM and then mined where the procedure remains same as
in [17]. In Modified Inverted Matrix with single scan, each
item as read from database makes an entry into Modified
Inverted Matrix with its support counter equal to 1. If an

item is already present, its support count is incremented.
Along with this the transactional array consists of two
entries, one (backward pointer) for item which is before
current item and another (forward pointer) for item which
is after current item in transactional database. The entries
made are same as in Inverted matrix [17]. Once an item is
read its entry is made into Modified Inverted Matrix and
consequently its backward pointer is set in its
corresponding transactional array and previous item’s
forward pointer is set at the same time. Same process is
repeated until all transactions are read. The item location
field only is sorted in order to reduce searching complexity
while building COFI Tree. The index column contains 5
entries namely sorted item, its support and its original
location in transactional array and actual item with its
support count. These five entries are kept to make
searching of item easier. The Modified Inverted Matrix for
first 13 transactions of Figure 2 is shown in the Figure 3(a)
given below. The Modified Inverted Matrix built as shown
in figure 3(b) is same as that of one build after reading
complete set of transactions at once. Thus it makes
incremental mining process possible. The algorithm for
creating MIM is as given below

Modified Inverted Matrix Algorithm
Input : Transactional Database (D)
Output : Modified Inverted Matrix
Method :
Pass I
1. While there is a transaction T in the database (D)
do
1.1 while there are items si in the transaction do
1.1.1Create the index part of the MIM

1.1.1.1 Add an entry in transactional array row
with 4- parameters
(A) Location in index part of the IM of the next
item si+1 in T null if si+1 does not exist.
 (B) Location of the next empty slot in the
transactional array row of si+1, null if si+1 does
not exist.
(C) Location in index part of the IM of the
previous item si-1 in T null if si-1 does not exist.
(D) Location of the next empty slot in the
transactional array row of si-1, null if si-1 does not
exist.

1.2 Goto 1.1
2. Goto 1
3. Sort index part of IM and keep original entry of item and
its frequency with sorted one.

Creating and Mining COFI-Trees from MIM
Input: Modified Inverted Matrix (IM) and a minimum
support threshold
Output: Full set of frequent patterns
Method:
1. Frequency Location = Apply binary search on the
index part of the IM to find the Location of the
first frequent item based on min_sup.
2. While (Frequency Location < IM Size) do
2.1 A = Frequent item at

Siddharth Shah et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (2) , 2017, 232-236

www.ijcsit.com 233

location (Frequency Location)
2.2 A Transactional = The Transactional array of
item A
2.3 Create a root node for the (A)-COFI-Tree with
frequency-count and participation-count = 0
2.4 Index Of TransactionalArray = 0
2.5 While (Index Of TransactionalArray < Frequency
of item A)
2.5.1 B = item from Transactional array at location
(Index Of TransactionalArray)
2.5.2 Follow the chain of item B to produce
sub-transaction C (forward and backward)
2.5.3 Items on C form a pre_x of the (A)-COFI-Tree.
2.5.4 If the pre_x is new then
2.5.4.1 Set frequency-count= 1 and participation-
count= 0 for all nodes in the path
Else
2.5.4.2 Adjust the frequency-count of the already
exist part of the path.
2.5.5 Adjust the pointers of the Header list if needed
2.5.6 Increment Index Of TransactionalArray
2.5.7 Goto 2.5
2.6 MineCOFI-Tree (A)
2.7 Release (A) COFI-Tree
2.8 Increment Frequency Location //to build the next

COFI-Tree
3. Goto 2

Function: MineCOFI-Tree (A)
1. nodeA = select next node //Selection of nodes
will start with the node of most frequent item and
following its chain, then the next less frequent item
with its chain, until we reach the least frequent item
in the Header list of the (A)-COFI-Tree
2. while there are still nodes do
2.1 D = set of nodes from nodeA to the root
2.2 F= frequency-count-participation-count of nodeA
2.3 Generate all Candidate patterns X from
items in D. Patterns that do not have A
will be discarded
2.4 Patterns in X that do not exist in the A-Candidate
List will be added to it with frequency = F
otherwise just increment their frequency with F
2.5 Increment the value of participation-count
by F for all items in D
2.6 nodeA = select next node
2.7 Goto 2
3. Based on support threshold _ remove non-frequent
patterns from A Candidate List.

Loc Index Transactional Array

 1 2 3 4 5 6 7 8

1
J,1,15
A, 8

(@,@)
(2,1)

(7,2)
(@,@)

(13,1)
(9,1)

(@,@)
(5,4)

(@,@)
(4,4)

(@,@)
(4,5)

(@,@)
(13,3)

(@,@)
(3,4)

2
Q,1,18
G, 4

(1,1)
(3,1)

(16,1)
(@,@)

(17,1)
(@,@)

(4,7)
(10,3)

3
M,2,8
D, 6

(2,1)
(4,1)

(7,1)
(@,@)

(5,3)
(7,2)

(1,8)
(5,6)

(@,@)
(7,5)

(8,2)
(4,7)

4
P,2,11
C, 7

(3,1)
(5,1)

(6,1)
(5,2)

(@,@)
(7,3)

(1,5)
(18,1)

(1,6)
(6,2)

(@,@)
(13,4)

(3,6)
(2,4)

5
L,2,12
B, 7

(4,1)
(@,@)

(@,@)
(4,2)

(@,@)
(3,3)

(1,4)
(9,2)

(14,1)
(@,@)

(3,4)
(6,3)

(7,5)
(14,2)

6
K,2,14
H, 3

(4,2)
(7,1)

(4,5)
(17,1)

(5,6)
(17,2)

7
R,2,16

E, 5
(6,1)
(3,2)

(3,3)
(1,2)

(4,3)
(13,1)

(12,1)
(13,2)

(3,5)
(5,7)

8
I,2,17
M, 2

(13,3)
(9,3)

(@,@)
(3,6)

9
H,3,6
N, 3

(1,3)
(@,@)

(5,4)
(10,1)

(8,1)
(10,2)

10
N,3,9
O, 3

(9,2)
(11,1)

(9,3)
(@,@)

(2,4)
(@,@)

11
O,3,10

P, 2
(10,1)
(@,@)

(13,4)
(15,1)

12
G,4,2
L, 2

(@,@)
(7,4)

(14,2)
(@,@)

13
F,4,13

F, 4
(7,3)
(1,3)

(7,4)
(14,1)

(1,7)
(8,1)

(4,6)
(11,2)

14
E,5,7
K, 2

(13,2)
(5,5)

(5,7)
(12,2)

15
D,6,3
J, 1

(11,2)
(16,2)

16
C,7,4
R, 2

(18,1)
(2,2)

(15,1)
(@,@)

17
B,7,5
I, 2

(6,2)
(2,3)

(6,3)
(@,@)

18
A,8,1
Q, 1

(4,4)
(16,1)

Figure 3 (a): Proposed Modified Inverted Matrix generated with single scan of database of first 13 transactions

Siddharth Shah et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (2) , 2017, 232-236

www.ijcsit.com 234

Loc Index Transactional Array

 1 2 3 4 5 6 7 8 9 10 11

1
R,2,16A,

11
(@,@)
(2,1)

(7,2)
(@,@)

(13,1)
(9,1)

(@,@)
(5,4)

(@,@)
(4,4)

(@,@)
(4,5)

(@,@)
(13,3)

(@,@)
(3,4)

(5,9)
(3,8)

(@,@)
(14,3)

(5,10)
(@,@)

2
Q,2,18G,

4
(1,1)
(3,1)

(16,1)
(@,@)

(17,1)
(@,@)

(4,7)
(10,3)

3
H,3,6
D, 9

(2,1)
(4,1)

(7,1)
(@,@)

(5,3)
(7,2)

(1,8)
(5,6)

(@,@)
(7,5)

(8,2)
(4,7)

(5,8)
(7,6)

(1,9)
(@,@)

(4,10)
(12,3)

4
M,3,8
C, 10

(3,1)
(5,1)

(6,1)
(5,2)

(@,@)
(7,3)

(1,5)
(18,1)

(1,6)
(6,2)

(@,@)
(13,4)

(3,6)
(2,4)

(@,@)
(13,5)

(13,7)
(@,@)

(@,@)
(3,9)

5
N,3,9
B, 10

(4,1)
(@,@)

(@,@)
(4,2)

(@,@)
(3,3)

(1,4)
(9,2)

(14,1)
(@,@)

(3,4)
(6,3)

(7,5)
(14,2)

(@,@)
(3,7)

(7,7)
(1,9)

(12,3)
(1,11)

6
O,3,10

H, 3
(4,2)
(7,1)

(4,5)
(17,1)

(5,6)
(17,2)

7
P,3,11E,

8
(6,1)
(3,2)

(3,3)
(1,2)

(4,3)
(13,1)

(12,1)
(13,2)

(3,5)
(5,7)

(3,8)
(13,6)

(15,3)
(5,9)

(14,3)
(13,7)

8
L,3,12M,

3
(13,3)
(9,3)

(@,@)
(3,6)

9
K,3,14N,

3
(1,3)

(@,@)
(5,4)

(10,1)
(8,1)

(10,2)

10
J,3,15
O, 3

(9,2)
(11,1)

(9,3)
(@,@)

(2,4)
(@,@)

11
I,3,17
P, 3

(10,1)
(@,@)

(13,4)
(15,1)

(13,5)
(18,2)

12
G,4,2
L, 3

(@,@)
(7,4)

(14,2)
(@,@)

(3,9)
(5,10)

13
F,7,13

F, 7
(7,3)
(1,3)

(7,4)
(14,1)

(1,7)
(8,1)

(4,6)
(11,2)

(4,8)
(11,3)

(7,6)
(17,3)

(7,8)
(4,8)

14
E,8,7
K, 3

(13,2)
(5,5)

(5,7)
(12,2)

(1,10)
(7,8)

15
D,9,3
J, 3

(11,2)
(16,2)

(18,2)
(@,@)

(@,@)
(7,7)

16
C,10,4

R, 2
(18,1)
(2,2)

(15,1)
(@,@)

17
B,10,5

I, 3
(6,2)
(2,3)

(6,3)
(@,@)

(13,6)
(@,@)

18
A,11,1Q,

2
(4,4)

(16,1)
(11,3)
(15,2)

Figure 3 (b): Proposed Modified Inverted Matrix generated with single scan of database after reading next 5 transactions

In COFI Tree building and mining, the same process as
explained in [17] is carried out with a modification of
considering backward pointers also. Since new transactions
can be easily added in Inverted Matrix without re-scanning
the original database, Incremental Mining can be achieved.
Now for building the COFI Tree for E considering
Modified Inverted Matrix, for the first column reading
forward pointers item D is discovered and from backward
pointers items H, C and B are discovered. Discarding item
H being not frequent and sorting the rest creates a branch of
E which is EDCB. This branch is same as generated from
Inverted Matrix. The similar process is carried out for
building COFI Tree and the final tree for ‘E’ is shown in
Figure 4 which is same as that of generated from Inverted
matrix in [17]. So the mining process remains same.
Moreover since for each item an independent COFI Tree is
built, the mining process can run in parallel. To mine
frequent patterns alternate splitting technique is used.

Figure 4: COFI Tree for ‘E’ using Modified Inverted Matrix [17]

3.1 Alternate Splitting Technique
In this technique, all frequent items from the modified
inverted matrix are evenly assigned to m nodes, one by one,
i.e. least frequent item is assigned to node 1, and next least
frequent item is assigned to node 2 and so on up to m
nodes. After that, (m+1)th item is assigned to node 1 and so
on until all items are distributed amongst all m nodes. The
implementation architecture of this technique is shown in
Figure 5. Since the mining process is distributed among
parallel nodes the running time of mining process can be
significantly reduced. By this we state that this is the best
algorithm of its kind which is both incremental and
interactive in nature and can be implemented parallel.

Figure 5: Implementation Architecture of Alternative

Splitting

Siddharth Shah et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (2) , 2017, 232-236

www.ijcsit.com 235

4. CONCLUSION

Association rule mining has been an important part in many
of the business, commercial and non-commercial
applications. But as the database updates, the maintenance
of association rules is an important and critical problem.
The overall objective of this work was to achieve the task
of incremental mining whenever database changes, without
referring to the previous database again and reduce the time
to mine frequent items. The proposed Modified Inverted
Matrix has been generated with single scan of database. In
the paper, through theoretical justifications, it was
demonstrated that using Modified Inverted Matrix, same
COFI Tree can be developed which we can generate using
original Inverted matrix. Also since independent trees are
built, the same MIM can be mined in parallel nodes. The
proposed modification to the inverted matrix serves two
important purposes. First, it can be updated easily by
reading the incremented database without referring to the
original database. Second, the COFI tree can be generated
from the modified inverted matrix. The generated COFI
tree can be used for extracting the frequent item-sets.
Hence, for generating updated association rules, re-
scanning of the original database is not required, which
achieves the task of incremental mining. Third, the
proposed MIM also supports interactive mining, i.e.
whenever desired support changes, it is not required to
rebuild the MIM.

REFERENCES
[1] R. Agrawal, T. Imielinski, and A. Swami. Mining Association

Rules between Sets of Items in Large Databases. Proceedings of the
1993 ACM SIGMOD International Conference on Management of
Data, pages 207—216, May 1993.

[2] J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without
Candidate Generation. Proceedings of the 2000 ACM-SIGMOD
International Conference on Management of Data, May 2000.

[3] W.-G. Teng and M.-S. Chen. Increnemtal Mining on Association
Rules, National Taiwan University Taipei, 2005

[4] V. Pudi. Data Mining: Concepts and Techniques, Oxford University
Press, Jan-2009

[5] C.-C. Chang et al., An Efficient Algorithm for Incremental Mining
of Association Rules, Proceedings of the 15th International
Workshop on Research Issues in Data Engineering, 2005

[6] D. W. Cheung, J. Han, V. T. Ng, and C. Y. Wong, “Maintenance of
discovered association rules in large databases: an incremental
updating technique,” In Proc. 12th Intl. Conf. on Data Engineering,
New Orleans, LA, pp. 106-114, Feb. 1996.

[7] C. K.-S. Leung, Q. I. Khan and T. Hoque. CanTree: A Tree
Structure for Efficient Incremental Mining of Frequent Patterns,
Proceedings of the Fifth IEEE International Conference on Data
Mining (ICDM’05), 2005.

[8] N. L. Sarda, N. V. Srinivas. An Adaptive Algorithm for Incremental
Mining of Association Rules,

[9] J. Qian, X.-P. Meng. An Adaptive Algorithm for Incremental
Mining Association Rules, Proceedings of the Second International
Conference on Machine Learning and Cybernetics, Xi’an,
November 2003

[10] M.A.B. Tobji, A. Abrougui, B.B. Yaghlane, GUFI: a new algorithm
for General Updating of Frequent Itemsets, The 11th IEEE
International Conference on Computational Science and
Engineering – Workshops, 2008

[11] D. Cheung, J. Han, V.T. Ng, and C. Y. Wong. Maintenance of
Discovered Association Rules in Large Databases: An Incremental
Updating Technique. Proceedings of the 12th International
Conference on Data Engineering, pages 106—114, February 1996.

[12] W. Cheung and O. R. Zaiane. Incremental Mining of Frequent
Patterns without Candidate Generation or Support Constraint.
Proceedings of the 7th International Database Engineering and
Application Symposium, July 2003.

[13] H. Lu, J. Han, and L. Feng. Stock Movement Prediction and N-
Dimensional Inter-Transaction Association Rules. Proceedings of the
1998 ACM SIGMOD Workshop on Research Issues on Data Mining
and Knowledge Discovery, pages 12:1—12:7, June 1998.

[14] N. F. Ayan, A. U. Tansel, and M. E. Arkun. An Efficient Algorithm
to Update Large Itemsets with Early Pruning. Proceedings of the
5th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 287- 291, August 1999.

[15] H. Toivonen. Sampling Large Databases for Association Rules.
Proceedings of the 22th International Conference on Very Large
Data Bases, pages 134—145, September 1996.

[16] S. D. Lee, D. W. Cheung, and B. Kao. Is Sampling Useful in Data
Mining? A Case Study in the Maintenance of Discovered
Association Rules. Data Mining and Knowledge Discovery,
2(3):233—262, 1998.

[17] M. El-Hajj and O. R. Zaıane. Parallel Association Rule Mining with
Minimum Inter-Processor Communication. Proceedings of the 14th

International Workshop on Database and Expert Systems
Applications, 2003

[18] Siddharth Shah, N. C Chauhan and S.D Bhanderi. “Incremental
Mining of Association Rules: A Survey”,) International Journal of
Computer Science and Information Technologies, Vol. 3 (3) ,
2012,4071-4074

Siddharth Shah et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 8 (2) , 2017, 232-236

www.ijcsit.com 236

